2 Research Awards to Park

During 2022 Research award ceremony, Dr. Park received two awards, first time in NCAT award history two awards given to one faculty: Outstanding Young Investigator Award and Intellectual Property Award.

NSF CISE Information Theoretic Navigation

Part of this project was in collaboration with NASA JPL MAARS: Machine learning-based Analytics for Rover Systems.

Imagine you are a food writer for a magazine, sent to a city for a day to discover and report on local cuisine. You have three meals (breakfast, lunch, and dinner) over which to gather information and maximize your visit to create the clearest impression for your readers. As you come into town, you have a decision to make. Will you visit familiar, fast food and chain restaurants, or, will you seek out new, undiscovered eateries to paint your culinary picture? Obviously, patronizing unfamiliar restaurants is going to yield new, quality information, helping readers back at home draw sound, comprehensive conclusions about the locale.

Following the same logic, imagine navigating with a Google map. The most direct route has a reputation for heavy traffic which could jeopardize timely arrival. A slightly longer distance with less traffic might give you a better chance to reach your destination on time. Maximizing information gain by traveling unchartered territory is the goal of Dr. John Park’s research. Park is using autonomous and connected vehicles armed with high-performance onboard computers to traverse unexplored areas. Under strict limitations of time and energy, he is trying to gain and transmit the most data possible from new, dynamic environments.

On the Floor

“We are not vacuuming, it just looks like we want a (very!) clean rug,”

says Park. Five Ph.D. candidates are kneeling on the floor, encircling a test-bed in the middle of Park’s Hines Hall lab. The team has taped-out a grid on low-pile carpet to border a series of two by two-foot squares called “cells”. Crawling over the carpet cells are four iRobot Roomba® vacuums.

While most Consumers purchase these devices in a pre-programmed suction mode, Park acquired them unprogrammed. His team has fitted each Roomba® with two round decks creating tiered towers above each device. The hip, techy, blinking wedding cakes crawl and spin on the floor, learning, updating, clarifying and confirming their environment. “The process by which autonomous vehicles learn about carpet in Hines Hall using is actually quite similar to how we would receive and process data in other, more difficult environments,” explains Park. “Autonomous vehicles allow operators to observe, record, make decisions and even take action in locations where physical human presence is either impossible or undesirable.”

Adorning the Roomba decks are serious technology: ZED Stereo Cameras, RPLIDAR 360-Degree Laser Ranger Scanners, NVIDIA Jetson AGX Xavier High-Performance Computing Units and Cray Supercomputers. Funding for this and other equipment has been provided by the NASA Jet Propulsion Laboratory, the Virginia Department of Transportation, the North Carolina Department of Transportation, the United States Department of Transportation, and most recently a $240,000 three-year grant from the National Science Foundation. This new project is known as IMPACT (Information-theoretic Multiagent Paths for Anticipatory Control of Tasks).

Learn, Update, Clarify, Confirm

Park’s project promotes the scientific and engineering value of intelligent navigation systems by finding the best routes of vehicles with autonomous decision-making based on the desired level of exploration, risk, and energy constraints. The navigation analyzes images (autonomous driving feature detection), selectively collecting data without interrupting their trips.

When an autonomous vehicle travels through Park’s floor grid, information is gained by visiting unclassified or uncertainly classified cells, observing the condition in those cells, and estimating the entropy (degree of disorder or randomness) in other cells. Each vehicle updates its path plan every time it moves to a new cell. By sharing information about the state of the cells it encounters, it helps to define the optimal parameters to be used in other vehicles’ journeys. If a cell is visited by another vehicle and found to be in the same state as the original cell of that type, then all vehicles have confirmation that these cells are correlated. The vehicles gather and confirm data during their journeys, updating Park’s knowledge bank as new information about the terrain is discovered.

Understanding how information can be learned throughout navigation will produce a guide to government planners and transportation engineers, and offer substantial benefits to society in improved choice modeling especially in congested traffic networks when heterogeneous users cause complex situations with weak road resilient networks. Future navigation and autonomous vehicle driving will realize improved efficiency by considering the tradeoffs between energy, time and environmental challenges.

The Team

Dr. Park has staffed his grant with five capable Ph.D. candidates from the Department of Computational Science and Engineering in the College of Engineering. Khadijeh Shirzad, Justice Darko, Yaa Takiwaa Acquaah, Larkin Folsom, and Nigel Pugh are fearless, despite the enormous programming tasks ahead. While they describe this project as “intricate” and “complicated” the team seems clear-minded and process-oriented with how they intend to gather and analyze the robots’ data.

The five students hail from three countries boasting majors in mathematics, physics and computer science, yet all seem to agree on one thing: while computational science and engineering is a complex, multifaceted field, it lives in reality.

“Our studies mimic and therefore benefit real life,”

says Acquaah.

“We use math and computational thinking to analyze data, solve pressing problems, and improve the world.”

written by Kelly S. Morgan

Chancellor Martin recognizes work.

“Active Sensing” News, ESS Journal, Press Release ​

1. Nationwide News through Spectrum Network Link

News on AI Data-Driven Active Sensing

2. ESS Journal Publication Link

In collaboration with Masahiro Ono at Hui Su at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004), and Masashi Minamide at the University of Tokyo, the paper “A Sampling-Based Path Planning Algorithm for Improving Observations in Tropical Cyclones” was accepted for publication by Earth and Space Science (ESS) Journal. https://doi.org/10.1029/2020EA001498

Earth and Space Science Journal, January 2022

3. NCA&T Press Release

As another hurricane season begins, a computational science and engineering faculty member and two Ph.D. students at North Carolina Agricultural and Technical State University aim to improve tropical forecasting and modeling by deploying drones to collect data from the eye of hurricanes.

Hyoshin Park, Ph.D., and Ph.D. candidates Larkin Folsom and Justice Darko will explore ways to maximize the data collection and possible flight paths in future storms in this project supported by NASA’s Jet Propulsion Laboratory (JPL). During the summer of 2019, Park visited JPL and formulated the problem of efficient hurricane data collection using drones in collaboration with Masahiro Ono, Ph.D., a research technologist at the laboratory.

“Our department’s innovative, artificial intelligence-based model explores the search space to improve the hurricane track and intensity,”

said Park, an assistant professor in the College of Engineering

In 2014, the National Oceanic and Atmospheric Administration (NOAA) released two unmanned aerial vehicles (UAVs) into the eye of Hurricane Edouard, at the time the first category 3 or stronger storm to form in the Atlantic Ocean since Hurricane Sandy. The UAVs were the first-ever deployed into the eye of a tropical system and collected data inside the eye and the storm’s outer vortex, enduring for 68 minutes before plunging into the ocean.

The team will use early measurements from NOAA when the hurricane is forming to determine the storm’s wind-field and other important data. The crew will then know the ideal location to drop up to 10 drones, which will communicate with each other and to their base on the plane, effectively collecting as much data as possible.

For years, hurricane hunters have launched dropsondes into the center of the storm, near its eyewall, to determine the boundaries and structures of a hurricane. The device contains a GPS receiver, along with pressure, temperature and humidity (PTH) sensors to capture atmospheric profiles and thermodynamic data.

This method, while critical to yield important data for forecasting, requires aircraft and crew to drop to unsafe altitudes for a better view of the drop zone. This maneuver takes more time and fuel and puts the crew at risk. Additionally, the process requires numerous dropsondes to gather sufficient data about the hurricane and its forecast.

The team will repurpose the methodology from Park and Folsom’s 2018 proposal funded by the National Science Foundation’s Division of Information and Intelligent Systems Robust Intelligence program. The study focused on maximizing data collection for a Mars mission exploration of an unexplored environment with no flow of humans or traffic.

“This research is important because it will help improve hurricane forecasts, saving local economies money by more precisely constraining the forecast track and intensity. Locations that will not be impacted can keep their economies open, and those that will be impacted can more effectively prepare.”

said Folsom

Additionally, the research will help improve public trust in tropical forecasting. The A&T team members are also joined by Hui Sui, Ph.D., principal investigator and JPL engineering and science directorate Stratosphere and Upper Troposphere, Masahiro Ono, Ph.D., JPL research technologist from Robotic Surface Mobility and Masashi Minamide, Ph.D., an assistant professor at the University of Tokyo. 

EAST GREENSBORO, N.C. (June 1, 2020) –

written by Alexander Saunders

End of content

No more pages to load